Laser Communication






Laser communications offer a viable alternative to RF communications for inter satellite links and other applications where high-performance links are a necessity. High data rate, small antenna size, narrow beam divergence, and a narrow field of view are characteristics of laser communications that offer a number of potential advantages for system design.
Lasers have been considered for space communications since their realization in 1960. Specific advancements were needed in component performance and system engineering particularly for space qualified hardware. Advances in system architecture, data formatting and component technology over the past three decades have made laser communications in space not only viable but also an attractive approach into inter satellite link applications.
Information transfer is driving the requirements to higher data rates, laser cross -link technology explosions, global development activity, increased hardware, and design maturity. Most important in space laser communications has been the development of a reliable, high power, single mode laser diode as a directly modulable laser source. This technology advance offers the space laser communication system designer the flexibility to design very lightweight, high bandwidth, low-cost communication payloads for satellites whose launch costs are a very strong function of launch weigh. This feature substantially reduces blockage of fields of view of most desirable areas on satellites. The smaller antennas with diameter typically less than 30 centimeters create less momentum disturbance to any sensitive satellite sensors. Fewer on board consumables are required over the long lifetime because there are fewer disturbances to the satellite compared with heavier and larger RF systems. The narrow beam divergence affords interference free and secure operation.

If you like this please Link Back to this article...



Post a Comment